Designing a Research Project

Science
Processes
&
Practices

A <u>flexible</u> framework that guides the study of nature.

Engineering Design Processes

Define the Problem.

What is the problem/need and Why is it important to solve?

Do Background Research: two major areas: users/customers

and existing solutions

Specify Requirements: analyze a similar, existing product

Brainstorm Solutions: generate many possible solutions

Choose the <u>Best</u> Solution: which best meets your design

requirements?

Develop the Solution: refine and improvement of a solution

Build a Prototype: Allows the designers to test how the

solution will work.

Test and Redesign: test new solutions before settling on

a final design.

Communicate Results: in final report, display board.

Comparing Design Processes

SCIENTIFIC PROCESS

ENGINEERING PROCESS

4.....

4.....

Based on results and

data, make

design changes,

prototype,

test again, and

review new

data.

Engineering: Specify Requirements

- What important characteristics that your solution must meet to succeed?
 - Compare YOUR idea with existing similar designs
 - What are their key features?
 - Will the cost justify the invention or re-design?
 - Do you need to work in a team for safety?

Experimental Design

- You <u>cannot</u> BEGIN your research until you receive Science Review Committee (SRC) approval.
- Projects that do not demonstrate use of the Scientific and Engineering practices are not eligible to compete in the OCSEF Fair.

No Simulations...

- The construction of a volcano that simply simulates the process of an eruption is NOT a science or engineering project involving experimentation.
 - If the student <u>predicted</u> that certain types of magma chambers caused specific types of eruptions and <u>constructed models to test this hypothesis</u>, *this* would be a valid research project.
 - If the student <u>designed sensors</u> that could predict when a volcano was likely to erupt and constructed a volcano model to <u>test</u> how a <u>prototype would work</u>, this would be a valid engineering design project.

Pill Bug <u>Science</u> Inquiry Project

1. Demonstrates experimental design

Science & Engineering practices

*** Remember, a <u>valid</u> science project is not just a summary of another person's research.

Ask a Question (science) or Define a Problem (engineering)

A creative process

Ex: Where do pill bugs prefer to live?

More Specific:

"What is the Effect of Different Substrates on Pillbug Habitat Selection?"

Science: Create a Hypothesis

- Must be testable
 - Does it show Cause & Effect?
 - If Pillbugs prefer the natural humus chamber, then they will stay there at least 80% of the time after the first 10 minutes of experimentation.
 - It is objective?
 - Is it CLEAR?

Background Research

- Before generating a hypothesis or proposed engineering solution:
 - Conduct background research to understand the scope of the study/design.
 - -Helps to determine possible dependent and independent variables

Beginning Experimental Design

Ideas for preferences to test:

- temperature
- moisture
- salinity
- pH
- food
- light sensitivity
- substrate
- light wavelength

Dealing with Variables

Which variable will you test?

Test only <u>ONE</u>
 variable at a time

Too many variables!!!! What are they???

Define the Variables

- Define the <u>Independent Variable(s)</u>
 - Time in habitat chamber

- Define the <u>Dependent</u>
 <u>Variable(s)</u>
 - Type of substrate

Creating an ExD (science)

- Define the <u>Experimental</u> Group(s)
 - Cut grass, wood chips
- Define the <u>Control</u> Group
 - For comparative sets of data
 - For behavioral studies,
 compare with known
 behavior in the wild

Creating an ExD

- Determine the <u>number of trials</u> or groups needed for validity
 - 10 pillbugs/chamber
 - 10 trials
- Determine how the results will be
 - quantified
 - # of pillbugs/ chamber/time increment

Design the Study

Provide AT LEAST 10 replicates or

organisms per experimental group

Decide <u>how</u>
 to keep other
 variables that
 may affect your
 data constant

Write Up the Procedure

- 1) Prepare a choice chamber
- 2) Cover the bottom of each chamber with either wood chips, cut grass or natural humus
- 3) Transfer ten pillbugs from the stock
 - culture into each choice chamber
- 4) Cover the chambers

Write Up the Procedure

5) Count and record how many pillbugs are in each chamber every 30 (or 10, 20) seconds for I0 - 30 minutes

Substrate Type	# of Pillbugs/Chamber										
Wood Chips	10	7	8	7	6	5	6	4	3	3	2
Cut Grass	10	13	6	5	5	4	3	3	2	2	0
Natural Humus	10	10	16	18	19	21	21	23	25	25	28
	Time (in secs)										
	0	30	60	90	120	150	180	210	240	270	300

Run the Experiment

Quantitatively summarize data

 Choose a Graph to visualize the number of pillbugs in experimental and control chambers per 30 second

interval.

Analyze the trend

Analyze The Results

- Interpret statistics properly
 - <u>DON'T</u> make broad statements from small samples

Not: This experiment <u>proves</u> that pillbugs prefer pine needles as a substrate

Instead: The results show that pillbugs <u>seem</u> to prefer pine needles as a substrate)

Analyze The Results

- Compare data with other groups
- Analyze the trends
- Address errors
- Look at all alternative interpretations

Objectively Analyze Data

- Common Statistics
 - Mean (Average)
 - -% Error
 - Standard Deviation
 - Chi Square
 - T-tests

level

Diversity Indices

Jr. Div.

Jr. Div.

Jr. Div.

Sr. Div.

Sr. Div.

Sr. Div.

*See PPT on "Statistics" for details

Come to a Conclusion

- Validate the hypothesis
 - Decide whether your data fits your hypothesis/problem or whether you need further testing and revision.
- Engineering: Solution consensus

Retest, Review, Refine

- Re-test
- Peer Review
- Refine the experiment/engineering project
 - Example: Choose the same size pillbugs

Report the Findings

- Team members should work closely
- Make deadlines
- Sharing your research with others through peer review and/or science fair judging interviews

Developed by

Anne Maben

Science Consultant, UCLA Science Project
For the

http://www.ocsef.org/

© 2020 All rights reserved

This presentation is for viewing only and may not be published in any form